

Council of Scientific and Industrial Research (CSIR) Latest Innovation and Technological Development – October 2025

Title of Technology/ Innovation	Brief Description about the technology/ Innovation (including details about the innovator/ developer)	If patente d (Yes/No) with patent number	Technology Readiness Level (1-9)	Benefits	Potential Applications	Pictures/ Videos, if any showcasing the Technology (Weblink)
Make in India	High end confocal	No	9	High	Research and	https://www.
Raman	micro Raman			throughput	Development,	youtube.co
Spectrometer	spectrometer at par		Successfully	system,	Gemmology,	m/watch?v=
	with international		commercialized,	robust and	Pharma,	NLZXGSQ7
(IndiRam CTR	standards, like NIST,		11 Purchase orders	high	Chemical	<u>n04</u>
Series Raman	ASTM, CE		and installation	reproducibi	Industries,	
Spectrometers)	certification, ISO		from National	lity, up to	Medical /	
	certification, 21CFR		Institutes and	20% cost	clinical	
	compliance, widely		Industries, with	reduction.	applications,	
	accepted in major		positive feedback		etc	
	high impact peer		from most of all.			
	reviewed journals					
	(CTR series).					

Picture

IIT - Roorkee Subject: Details on latest innovations and technological developments

Sl. No.	Title of Technology/Innovatio n	Brief Description about the technology/Innovation (including details about the innovator/developer)	If patented (Yes/No) with patent number	Tech nolog y Read iness Level (1-9)	Benefits	Potential Applications	Pictures/Vid eos, if any showcasing the Technology (Weblink)
1.	A hexagonal structure packaging solution using banana pseudostem fibers and its method of preparation	The presented technology, Banana Pseudostem-Based Protective Packaging, is an eco-innovative, bio-inspired cushioning solution developed from banana pseudostem fibers, a commonly discarded agricultural byproduct. This innovation addresses the global challenge of plastic waste by introducing a biodegradable, sustainable, and space-efficient alternative to traditional plastic and foam based protective packaging materials. Developed under the leadership of Prof. Kirtiraj Gaikwad, Department of Paper Technology, IIT Roorkee, this research was collaboratively executed with contributions from Harsh Satiya. Prof. Gaikwad conceptualized and supervised the project, drawing on his extensive expertise in sustainable and smart packaging technologies. The innovation leverages a hexagonal honeycomb-inspired design fabricated from mechanically pulped	Yes Application no.: 202511074997	9	Sustainable and Eco-Friendly: The technology utilizes banana pseudostem fibers—an abundant agricultural residue—thereby converting waste into value-added materials. This not only reduces environmental pollution but also supports the principles of the circular bioeconomy and sustainable packaging innovation. Chemical-Free & Non-Toxic Process: The entire fabrication process is mechanical, eliminating the use of harmful chemicals, adhesives, or synthetic binders. This ensures a clean, non-toxic, and biodegradable product suitable for food-contact and ecosensitive packaging applications. Superior Mechanical Performance: The hexagonal	Protective Packaging for Fragile Goods: The developed banana pseudostem- based hexagonal cushioning structure is ideal for protective packaging of fragile and shock- sensitive items such as glassware, ceramics, electronics, and laboratory instruments. Its superior impact absorption and load-bearing properties ensure product safety during handling and	https://drive. google.com/f ile/d/1gcWgl sFnoosmv8f w_rViHsMI 28oj06Q/vie w?usp=sharin g

banana pseudostem fibers—without any chemical pre-treatment or synthetic binders making the process low-cost, eco-friendly, and scalable. The hexagonal configuration enhances load distribution, compressive strength (up to 10.05 MPa), impact absorption (113.74 J/m), and space efficiency, achieving superior cushioning performance compared to conventional Comprehensive materials. analyses compression, impact, TGA, DSC, FTIR, and SEM validated its mechanical integrity, thermal stability, and fiber bonding quality. The developed cushioning inserts can be adopted in food, electronics, logistics, and medical packaging sectors, aligning with circular economy principles and national sustainability missions such as "Zero Plastic Waste" and "Make in India." This innovation represents a significant advancement in biodegradable protective packaging, promoting agricultural waste valorization and offering an industrially environmentally viable. responsible alternative for next-generation sustainable packaging solutions.

Inventors: <u>Kirtiraj Kundlik Gaikwad</u>, Harsh Satiya, Annu Sharma, Anurag Kumar Roy and Sampat Bhati cushioning material exhibits high compressive strength $(\approx 10.05 \text{ MPa})$ and impact resistance (≈113.74 J/m), ensuring excellent shock absorption and structural integrity for fragile and heavy goods during transit and storage.

Bio-Inspired Hexagonal Design: Inspired by the natural honeycomb structure, the innovative hexagonal geometry provides an optimal strength-toweight ratio and space efficiency. This design enhances stacking stability. reduces material use, and ensures uniform load distribution during packaging.

Enhanced Thermal and Structural Stability: Thermal analyses (TGA and DSC) confirm high thermal resistance and minimal degradation up to 350 °C, making it suitable for applications across diverse climatic and industrial conditions.

Economical and Scalable Manufacturing: The mechanical pulping and compression molding technique ensures a low-energy, cost-effective, and easily scalable process transportation.

Food and Agricultural Packaging: Given its biodegradability and chemical-free nature. the material is highly suitable for fresh produce, fruits, vegetables, and dry food products. It offers a natural, nontoxic alternative to synthetic travs. inserts, and cushioning fillers commonly used in the food and agri-supply chains.

Pharmaceutical and Medical Device Packaging: The lightweight yet robust structure makes it suitable for medical instruments. diagnostic kits, and fragile pharmaceutical

adaptable for industrial mass containers, production using existing pulp ensuring safe molding infrastructure. delivery without contamination or Lightweight & Space-Efficient: breakage while maintaining eco-The design reduces bulk and optimizes internal space, compliance with leading to lower logistics and regulatory transportation costs while standards. maintaining cushioning efficiency—an E-commerce and ideal replacement for bulky EPS and Logistics plastic foam packaging. Industry: With rapid Agricultural growth in online Waste Valorization: This innovation retail. this provides sustainable innovation can utilization pathway for banana replace plasticpseudostem waste, which is based bubble otherwise underutilized or wraps, foams, and molded inserts in incinerated. It adds economic value for farmers and promotes e-commerce, rural livelihoods by establishing courier, and biomass collection logistics sectors, and processing value chains. offering costeffective, Wide Industrial Applicability: recyclable. The developed material has compostable versatile uses in food packaging options. packaging, electronics, pharmaceuticals, logistics, and e-commerce sectors, ensuring Automotive and broad market adoption potential Industrial as a green alternative to Components synthetic protective packaging. Packaging: The cushioning and Aligned with National and vibration-Global Goals: The innovation damping

contributes directly to India's "Zero Plastic Waste," "Swachh Bharat Abhiyan," "Make in India," and UN SDG-12 (Responsible Consumption and Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. Consumer Electronics and Appliance Packaging: Applicable for packaging of	
Bharat Abhiyan," "Make in India," and UN SDG-12 (Responsible Consumption and Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. Bharat Abhiyan," "Make in India," and UN SDG-12 (Responsible Consumption and Production) goals by promoting home-grown, biodegradable, and circular packaging free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
India," and UN SDG-12 (Responsible Consumption and Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. India," and UN SDG-12 (Responsible Consumption and Production) goals by promoting assemblies, ensuring damage-free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
(Responsible Consumption and Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. (Responsible Consumption and Production) goals by promoting assemblies, ensuring damage-free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. Production) goals by promoting home-grown, biodegradable, ensuring damage-free transport of high-value industrial products. Consumer Electronics assemblies, ensuring damage-free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. Production) goals by promoting home-grown, biodegradable, and circular packaging solutions. Production) goals by promoting home-grown, biodegradable, ensuring damage-free transport of high-value industrial products. Consumer Electronics assemblies, ensuring damage-free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
home-grown, biodegradable, and circular packaging solutions. home-grown, biodegradable, free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
and circular packaging solutions. free transport of high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
solutions. high-value industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
industrial products. Consumer Electronics and Appliance Packaging: Applicable for	
Consumer Electronics and Appliance Packaging: Applicable for	
Consumer Electronics and Appliance Packaging: Applicable for	
Electronics and Appliance Packaging: Applicable for	
Electronics and Appliance Packaging: Applicable for	
Appliance Packaging: Applicable for	
Packaging: Applicable for	
Applicable for	
packaging of	
televisions,	
mobile phones,	
kitchen	
appliances, and	
computer	
accessories,	
where protection	
from impact and	
temperature	
fluctuations is	
essential. The	
design offers an	
eco-friendly	
substitute to	
expanded	
polystyrene	
(EPS) and	
polyethylene	
foams.	

	Sustainable	
	Retail and Gift	
	Packaging:	
	Its unique texture,	
	strength, and	
	natural	
	appearance make	
	it an attractive	
	and sustainable	
	choice for eco-	
	premium retail	
	packaging,	
	gifting, and	
	corporate	
	branding,	
	promoting	
	environmental	
	consciousness	
	among	
	consumers.	
	Industrial Pallet	
	and Cushion	
	Inserts:	
	The hexagonal	
	honeycomb	
	structure can be	
	adapted as	
	biodegradable	
	pallet liners, void	
	fillers, or	
	interlocking	
	inserts in	
	warehouses,	
	helping reduce	
	plastic usage in	
	bulk packaging	
	and storage	

			systems.
			Rural
			Entrepreneurship
			and Waste
			Management:
			The technology
			can foster rural
			startups and
			cottage industries
			based on banana
			fiber extraction
			and pulp molding,
			promoting waste-
			to-wealth models
			and sustainable
			employment in
			banana-growing
			regions.
			Environmental
			and Educational
			Demonstrations:
			The innovation
			can serve as a
			demonstration
			model for
			sustainability
			education,
			showing practical
			examples of
			circular economy,
			biomimicry, and
			agricultural waste
			utilization in
			packaging design
			and engineering
			programs.
<u> </u>			programs.

						next-generation nanomaterials.	
3.	A process and an apparatus for synthesis of metal-loaded multiwalled carbon nanotubes	The proposed method is a continuous single-step approach toward the disposal of industrial organic waste, which involves the simultaneous generation of metal-loaded graphitic carbon nanotubes (M/G-CNTs) ((Nix-Cuy/Nix-Znz)-C). In the mentioned process, industrial organic waste is subjected to the continuous hydrothermal apparatus for the synthesis of graphitic carbon nanotubes that can be used as a catalyst, as a raw material for energy storage devices, and in biological applications Inventors: Narapureddy Siva Mohan Reddy and Vikas Patel	Yes Application no.: 202511048725	5	The main key feature of this invention is to tackle the massive generation of organic waste from some industries, basically an alternative to the standard wastewater treatment technique. To convert the organic waste, which is rich in carbon, makes more valuable products like graphitic carbon, graphene oxides, and carbon nanotubes, which can be utilized as energy sources and for biomedical purposes.	The primary focus of G-CNTs applications is electronics, where we can improve the conductivity of semiconductors, batteries, and supercapacitors. It can also be utilized for energy storage, allowing for improvements in lithium-ion batteries	https://drive. google.com/ drive/folders /1q6G- wf9gdzi2cQ MHEnD96q 3hP2oLPEP 8?usp=shari ng
4.	System and method for cyberattack mitigation and delivery of updates using containerized microservices	Connected Vehicles (CVs) rely on Over-the-Air (OTA) updates to maintain software functionality, but these updates are vulnerable to cyberattacks and unauthorized access. This invention introduces a Zero-Trust Security Architecture (ZTA)-based framework for secure OTA updates in CVs. It employs a two-level authentication mechanism—using digital certificates and dynamic protocols like Zero-Knowledge Proof (ZKP) or One-Time Passwords (OTP)—to verify update sources. Lightweight, hardened containerized microservices ensure secure deployment, while real-time monitoring and seamless container replacement mitigate	Yes Application no.: 202511080707	3	- By enhancing the safety and efficiency of autonomous vehicles, the solution contributes to reducing traffic congestion and environmental pollution in urban areas Improves CV security, resilience, and operational continuity Addresses critical vulnerabilities in dynamic vehicular environments.	The invention's secure OTA update framework for Connected Vehicles (CVs) addresses critical market needs driven by the rapid growth of autonomous and connected vehicle technologies. Key applications include: Automotive Manufacturers: Enhancing	https://drive. google.com/ drive/folders /1bIjJvlaG4 a2QEHZfV ZV5Xd3kxq 3pBdBL?us p=sharing

cyberattacks without downtime. This		vehicle security	
solution enhances CV security, resilience,		and compliance	
and operational continuity in dynamic		with regulatory	
vehicular networks.		standards for	
veniculai networks.		OTA updates.	
		Fleet Operators:	
		Ensuring secure,	
Inventors: Shikhar Vashistha, Indukuri		real-time updates	
Mani Varma and Neetesh Kumar		for large-scale	
		vehicle fleets to	
		maintain	
		operational	
		efficiency and	
		safety. Smart City	
		Integrators:	
		Supporting secure	
		V2X	
		communication	
		for intelligent	
		transportation	
		systems.	
		Cybersecurity	
		Solutions:	
		Providing robust	
		protection against	
		cyber threats in	
		dynamic	
		vehicular	
		networks. Market	
		drivers include	
		the increasing	
		adoption of	
		autonomous	
		vehicles, rising	
		cybersecurity	
		threats, and	
		stringent	
		regulatory	

Devanahalli Bokkassam	5.	A thermal fluid and a method for producing the same	In Proton Exchange Membrane (PEM) Fuel Cells, nearly 50% of the input energy is lost as heat, requiring an efficient thermal management system. Water, commonly used as a coolant, is limited to low-temperature applications. To address this, nanofluids are introduced as high-performance thermal fluids for high-temperature operations. These fluids enhance heat transfer due to Brownian motion and increased thermal conductivity. In this work, a nanofluid comprising 1 vol% Al ₂ O ₃ –MgO hybrid nanoparticles dispersed in ethylene glycol with Tween-80 as a surfactant is synthesized. This hybrid nanofluid offers superior thermal properties, making it ideal for efficient heat removal in high-temperature PEM fuel cells. Inventors: Amit C Bhosale, Bhaskar Jyoti Deka, Akshay Sharma and Samrudh Devanaballi Bokkassam	Yes Application no.: 202511080708	4	The thermal fluid exhibits sustained stability, allowing it to be used safely and effectively for longer. The proposed technology enhances the heat transfer within the system by over 35%. The nanofluid is synthesized at a lower cost compared to existing literature. Lower emissions are involved in nanofluid synthesis as analyzed through technoenvironmental analysis.	requirements for vehicle safety and data protection. This technology positions itself as a critical enabler for the future of secure, connected mobility. • The proposed technology finds applications as efficient thermal fluids in electrochemical devices operating at high temperatures, such as HTPEMFCs. • The synthesized nanofluid can alternatively be used as a lubricant in mechanical systems to prevent wear and tear of devices.	https://drive.google.com/drive/folders/1CunluRL4vMx5RZveL4UOUHnuTUSfxQne?usp=sharing
-----------------------	----	---	--	-----------------------------------	---	---	---	--

6.	A cellulose-based biodegradable hybrid adsorbent for selective phosphate and nitrate recovery from aqueous solutions	The present invention relates to the cellulose-based biodegradable hybrid adsorbent for selective phosphate and nitrate recovery from aqueous solutions for its further use as a slow-release fertilizer. The slow-release fertilizer is polymeric in nature, biodegradable and is capable to release the nutrients such as phosphate and nitrate over a significantly long period of time, often at a rate that is in synchronization with the nutrient need of the plants. Inventors: Sudipta Sarkar, Pradip K. Maji and Priya E	Yes Application no.: 202411066297	3	The present invention provides a cellulose-based biodegradable hybrid adsorbent for selective phosphate and nitrate recovery from aqueous solutions for its further use as a slow-release fertilizer It also provides a slow-release fertilizer which eliminates the pollution resulting from the runoff of phosphate and nitrate-rich water from the agricultural field. Further it provides a slow-release fertilizer which is polymeric in nature, biodegradable, and capable of releasing phosphate and nitrate over a significantly long period of time. It also provides a slow-release	The present invention aims to provide a cellulose-based biodegradable hybrid adsorbent for selective phosphate and nitrate recovery from aqueous solutions for its further use as a slow-release fertilizer.	https://drive. google.com/ drive/folders /11- VjDpQDGf Mnc- mR4KQZqz mCTLi7Ksh E?usp=shari ng
					fertilizer which is an efficient adsorbent for the removal of phosphate and nitrate from aqueous solutions such as secondary-treated sewage.		
7.	A hydroxy-modified biomass for rubidium adsorption	The technology introduces an eco-friendly and cost-effective adsorbent derived from hydroxy-modified biomass for the selective recovery of rubidium ions from water streams such as seawater, brine, and industrial effluents. Developed using valorized agricultural waste, the material demonstrates high adsorption efficiency	Yes Application no.: 202511033370	4	Provides a green and sustainable method for rubidium recovery from water streams. Achieves high adsorption efficiency (>98%), ensuring effective performance.	Recovery of rubidium ions from seawater, seawater brine, and industrial wastewater. Applicable in industries such as	https://drive. google.com/ drive/folders /10jhLwxhD aeUP5jmE3 9LmDIbU OAcIQAG? usp=sharing

	1	(> 000/)			C - 4 - CC - 4' '41 - 1 - 1	.14	
		(>98%) across a wide pH range. Its			Cost-effective, with lab-scale	electronics,	
		sustainable composition and scalable			recovery significantly cheaper	energy storage,	
		performance offer a green alternative to			than market rubidium prices.	defense, and	
		conventional rubidium extraction methods,			X7	aerospace, where	
		aligning with clean water and circular			Versatile—suitable for use with	rubidium is in	
		economy goals. This innovation addresses			seawater, brine, and industrial	high demand.	
		the growing demand for rare element			effluents.	Useful for	
					Halma in massymas massyamy	desalination	
		recovery while minimizing environmental			Helps in resource recovery while also contributing to waste	plants and	
		impact and operational costs.			management and environmental	mineral	
					protection.	extraction units	
		Inventors: Bhaskar Jyoti Deka, Shubham			protection.	generating	
		Ketan Sharma and Prajwal Mallikarjun				rubidium-	
		Timashetti				containing	
						effluents.	
						officiality.	
						Supports	
						sustainable	
						resource recovery	
						and aligns with	
						circular economy	
						practices.	
						•	
						Addresses the	
						need for cost-	
						effective and	
						environmentally	
						friendly	
						alternatives in	
						rare element	
						extraction.	
8.	A multifunctional	The present invention relates to a	Yes	3	The present invention provides	The	https://drive.
	colourimetric sensor for	multifunctional colourimetric sensor for			a cost effective, user-friendly,	multifunctional	google.com/
	detection of volatile	detection of volatile aldehydes, ketones and	Application		multifunctional colourimetric	colourimetric	drive/folders
	aldehydes, ketones and	cigarette smoke. This is a multifunctional	no.:		sensing device on cotton fabric.	sensor on cotton	/1XInZKBx
	cigarette smoke	colourimetric sensor on cotton fabric of	202511081325		The highly porous structure of	fabric can be	BUTbMWJ7
	1						

		dimension approximately 8mm × 8mm for detection of volatile aldehydes, ketones and cigarette smoke. The, functionalized white cotton cloth strip, having, is utilized as the sensing substate. Functionalization of the strips was done by soaking the cotton strips in a sensing solution. The sensing solution is prepared using a pH indicator and hydroxylamine acid salt. Inventors: Indranil Lahiri, Eshita Mukherjee, Debrupa Lahiri and Partha Roy			cotton provides large surface area for absorption of gaseous species. The multifunctional colourimetric sensor has very good selectivity towards aldehydes and ketones over other interfering volatile vapours present in the environment. It is fully disposable and biodegradable.	employed for monitoring indoor air quality by selectively detecting hazardous volatile aldehydes and/or ketones present in the environment. It can also behave as a cigarette smoke detector. The sensor can be used as a common, cotton fabric based, multipurpose colourimetric sensing platform for environmental and public safety.	ZhaVFO8xF b2suwxm0? usp=sharing
9.	Reconfigurable beam switching network for antenna arrays	The present disclosure provides a switched beamforming antenna system comprising a linear antenna array comprising a plurality of radiating elements, a reconfigurable beam switching network (RBSN), and a beamforming network comprising a butler matrix having N input ports and N output ports. The beamforming network is coupled to the RBSN, wherein the RBSN comprises a transceiver switch, a power divider coupled to the transceiver switch, a first set of switching nodes coupled to the power divider, and a second set of switching nodes	Yes Application no.: 202511083840	3	The switched beamforming antenna system provides improved beam control, wideband operation, and reduced design complexity. Using a Butler matrix with a reconfigurable beam switching network, it generates both conventional and interpolated beams for flexible beam steering. The use of simple 180° phase-inversion elements lowers cost and enhances reliability, while the variable gain amplifier enables dynamic	The switched beamforming antenna system is applicable in 5G/6G communication networks, radar and sensing systems, satellite links, and IoT networks. It enables precise beam steering, improved signal quality, and	https://drive. google.com/ drive/folders /1t73YWRu bmA- QHdZmlZZ xNjAvpaj8U xPD?usp=sh aring

10	A sayılti mayım oga saştin a	coupled to the power divider. A first subset of switching nodes from the first set of switching nodes is coupled to a first subset of the N input ports of the butler matrix, a second subset of switching nodes from the second set of switching nodes is coupled to a second subset of the N input ports of the butler matrix, and N/2 180-degree phase-inversion elements are provided across a plurality of output ports of the first subset of switching nodes and the second subset of switching nodes. Inventors: Rajib Kumar Panigrahi and Aradhana Singh Kaintura	Vog	2	gain control. Overall, the system offers a compact, efficient, and cost-effective beamforming solution for modern RF and communication applications.	adaptive coverage. Its scalable and lightweight design also suits aerospace, navigation, and remote sensing applications requiring reliable, high-resolution performance.	https://dwixe
10.	A multi-purpose seating device	The present disclosure relates to a multipurpose seating device that accommodates conventional sitting posture in elevated stance, and cross-legged posture on elevated and ground/floor stances. The device includes a foldable and detachable cross-legged support seat integrated with a stool. The cross-legged support seat can be employed independently on the ground or attached to the chair for elevated sitting. The chair can transform into a stool when the support seat is detached, making it versatile for various environments. The multi-purpose seating device also includes a footrest and a storage, enhancing comfort and functionality. Inventors: Sonal Atreya, Abhishek	Yes Application no.: 202411070952	3	The multi-purpose seating device of the present disclosure provides the following advantages: 1. Seamless transitions between a chair for elevated sitting, a stool for active sitting, and a floor seat for ground-level activities, making it suitable for environments like classrooms, offices, and homes. 2. Allows for both conventional and cross-legged postures in chair mode, while the detachable cross-legged support seat provides additional comfort when used on the floor. The inclusion of a foldable backrest ensures support for different seating levels.	The multi- purpose seating device finds its footing in the field of ergonomic and multifunctional furniture. It is industrially applicable in homes, workplaces, and educational or community spaces by enabling both conventional and cross-legged postures in elevated and	https://drive. google.com/ drive/folders /13AvRUwu- AEQay1lyG- ZIIqw4yaFS fODy?usp=s haring

11.	A power management unit for battery operated powertrain and a control	The present disclosure particularly relates to a power management unit (PMU) (101) for a battery-operated powertrain (112). The	Yes Application	3	3. The detachable cross-legged support seat with a belt/shoulder strap enhances portability, making it easy to carry between different locations. 4. The integrated stool features a storage compartment for personal items and a footrest to provide additional comfort in cross-legged sitting postures. 5. The castor wheels on the stool allow for easy movement and rearrangement, making the device highly adaptable to dynamic environments. The power management unit for the battery-operated powertrain of the present disclosure is	The power management unit of the present	https://drive. google.com/ drive/folders
	method thereof	battery-operated powertrain (112) is associated with a marine vessel (400). The PMU (101) comprises a charger unit (100) upstream the PMU (101) and a three-phase two-level inverter (105) downstream the PMU (101). While the charger unit (101) is in electric communication with a charging gun (114) to supply a regulated DC power to the PMU (101), the three-phase two-level inverter (105) is in electric communication with a propulsion motor (106) to drive a shaft (107). The shaft (107) mechanically drives a propeller (108). The PMU (101) optimally manages charging and discharging of multi-chemistry batteries of a battery module (113) to run the battery-	no.: 202511050992		advantageous in the following manner— 1. Enables simultaneous fast charging of batteries with different chemistries and characteristics. 2. Ensures thermal checks at each step of charging including transition charging. 3. Ensures safety of the batteries by disconnecting batteries after stoppage of marine vessel.	technology offers efficient and reliable energy control for battery-operated marine vessels, including fishing boats, passenger ferries, and cargo transit vessels. It enables optimized power distribution, enhances operational efficiency, and supports sustainable, zero-emission marine	/1WaLHR1B jX7R6Smgf WG31tYFcg eC2GEsA?u sp=sharing

	operated powertrain (112). A control unit (201) executes a method (500) to optimally charge multi-chemistry batteries (102, 103, 104), while a control unit (202) executes a method (600) to optimally discharge multi-chemistry batteries (102, 103, 104). Inventors: Thanga Raj Chelliah and Vidyasagar Tummakuri	V			transport. The design is adaptable, scalable, and allows for modifications to suit specific vessel requirements, providing flexibility while maintaining performance and safety.	
A small scale low-cost multi-millet de-husking machine	The present disclosure relates to a multimilet de-husking machine. The machine includes a hopper and a housing unit attached to bottom of the hopper and mounted on a stand. The housing unit includes an upper section and a lower section. The upper section includes a cylindrical casing, and a shaft with plurality of spiral blades mounted inside the cylindrical casing for de-husking of millets. The lower section attached to a bottom opening of the upper section such that husk of the de-husked millets extracted from the sieve enters to a husk storage unit of the lower section. The machine ensures effective separation of seeds and husks of the millet while minimizing seed breakage. Inventors: S.K. Singal, Sonal K. Thengane, Imtiyaz Ali and Varun	Yes Application no.: 202511054910	4	The multi-millet de-husking machine offers several benefits, including low cost, compact design, and suitability for small-scale and rural applications. It efficiently de-husks a wide range of millet varieties (1–3 mm in diameter) using friction, attrition, and compression, ensuring minimal seed breakage and effective separation of husk and grain. The spiral blade with a pressure adjustment mechanism enhances performance and flexibility. By enabling local-level processing, the machine helps small and marginal farmers increase productivity, reduce manual effort, and improve income through value addition.	The present system may be used for dehusking of multimillets for small-scale farmers with limited land holdings, primarily in rural and semi-rural areas.	https://drive. google.com/ drive/folders /1PFWYvoll 5hpgSEfdu M4liiz3fnjh7 w0b?usp=sh aring

13.	A manually operated water flow control apparatus for gharats	to an apparatus for controlling flow of water from a water channel. The apparatus comprises a frame enclosing a first and a second butterfly valve fixed on different faces of the frame. The first butterfly valve including a first plate fixed to a first rotatable shaft, and the second butterfly valve including a second plate fixed to a second rotatable shaft, and a first and a second sprocket rotatably mounted over the first shaft, and a third sprocket rotatably mounted over the shaft. During operation of the apparatus the rotatory motion of the first sprocket results in rotary motion of the first plate blocking flow of water from the water channel to a water collecting tank, and simultaneous rotary motion of the second plate allowing the flow of water through an opening of the water channel to a penstock to commence operation of the Gharat. Inventors: Vinay Sharma, Navneet Arora, Gajendra Giri, Kritika Sharma, Rakesh G. Nair, Prateek Sharma, Abhishek Shivakumar Pujar, Subham Kumar, Shubham Singh, Ayush Kishore and	Yes Application no.: 202511055994	4	The manually operated water flow control apparatus of the present disclosure is advantageous in the following manner— 1. Enables control of fluid flow from a water channel. 2. Manual operation of the apparatus is eco-friendly and cost-effective, as no electricity is consumed. 3. Ensures safety of the operator.	The manually operated water flow control apparatus of the present invention can be employed in locations such as hilly regions, where free-flowing water is available, to control flow. The controlled flow of water can be used for generating electricity for a household or running the Gharat for production of consumable flour from millets or grains.	https://drive. google.com/ drive/folders /1StqsMZZg DMAFnF9k aXP4 pS2C 1d2TrdQ?us p=sharing
	m 1	Shreyansh Jain	T.	2	TII.	TEL	7.7
14.	Thermal contact conductance and conductivity measurement system	The present disclosure relates to an integrated thermal contact conductance and conductivity measurement system 100. The system 100 includes a vacuum chamber assembly 102, a test column assembly 104,	Yes Application no.: 202511060809	3	The present invention provides a versatile and accurate system for measuring thermal conductivity and thermal contact conductance (TCC)	The present system may be used for measurement of thermal	https://drive. google.com/ drive/folders /1BS7wfyC wiwJYbqDd

a loading assembly 106, and a data acquisition unit 108. The measurement system 100 estimates thermal conductivity and thermal contact conductance (TCC) over a wide range of temperatures, from cryogenic (-223 °C) to high temperatures (500 °C). The measurement system enables systematic estimation of TCC under varying load, temperatures, and surface roughness in vacuum and gaseous environments. The measurement system 100 facilitates monitoring, enhanced visual easy of replacement samples, precise temperature control, and data acquisition, enabling efficient and accurate thermal conductivity and TCC measurement.

Inventors: Andallib Tariq, Khursheed Anwar Khan, Arun Chand, Siddappa P G and Altaf Hasan Tarique

across a wide temperature range (-223 °C to +500 °C) under varied load, surface roughness, and environmental conditions (vacuum and gaseous). By eliminating the need for additional heat flux meters and enabling direct flux estimation through the sample, it simplifies experimentation while improving accuracy. The supports system diverse materials, including metals, alloys, ceramics, composites, and dielectrics, with reliable measurement uncertainties. Additionally, it ensures precise load and temperature control, adjustment for automatic thermal expansion, easy sample replacement, visual monitoring, and efficient data acquisition, making it a robust solution for research and industrial applications requiring effective thermal management.

conductivity and thermal contact conductance (TCC) of a test sample over a wide range of temperatures, from cryogenic (-223 °C) to high temperatures (500 °C). While aspects of the present invention have been particularly shown and described with reference to the embodiments above, it will be understood those skilled in the art that various additional embodiments may be contemplated by modification of the disclosed device without departing from the scope of what is disclosed. Such

embodiments should

understood to fall within the scope of the present

he

4bnpfD3ixBcp DF?usp=sha ring

	T		T		1		1
						invention as	
						determined based	
						upon claims and	
						any equivalents	
						thereof.	
15.	Titanium Carbide	The present disclosure relates to a titanium	Yes	4		The present	https://drive.
	MXene/Graphitic	carbide MXene/graphitic carbon nitride			The present disclosure	disclosure is	google.com/
	Carbon Nitride	(Ti3C2/g C3N4) based electrochemical	Application		described herein has several	applicable for	drive/folders
	(Ti3C2/g-C3N4) Based	immunosensor for detection of TNF-α, and			technical advantages as follows:	non-invasive	/1eWkD5Cu
	Electrochemical	a process for its fabrication. The titanium	202511064182		8	diagnostics,	Nxzras64NN
	Immunosensor for				- an electrochemical	detection, and	Deps2aXoS6
	Detection of TNF-a	based electrochemical immunosensor			immunosensor for ultrasensitive	monitoring of the	0JQhx?usp=
		comprising: a) titanium carbide MXene			and picomolar level	oral cancer	sharing
		(Ti3C2 MXene); b) graphitic carbon nitride			quantification of tumour	biomarker tumour	SHATTING
		(g-C3N4); c) linker moiety; d) monoclonal			necrosis factor-alpha (TNF-α)	necrosis factor-	
		antibody with specificity to TNF- α ; e)			necrosis factor alpha (1141 w)	alpha (TNF-α).	
		blocking agent; and f) screen-printed			- an electrochemical	The developed	
		carbon electrodes (SPE); wherein the			immunosensor for non-invasive	electrochemical	
		titanium carbide MXene (Ti3C2 MXene) is			diagnostics, detection and	immunosensor	
		surface terminated with oxygen and/or			monitoring of oral cancer	serves as a	
		hydroxyl groups and is doped onto graphitic			biomarker TNF- α - a valuable	valuable clinical	
		carbon nitride (g-C3N4), forming a titanium			clinical diagnostic tool for early	tool for the early	
		carbide MXene-graphitic carbon nitride			detection oral cancer through a	detection of oral	
		(Ti3C2 MXene/g-C3N4) heterojunction			non-invasive medium	cancer through a	
		that is deposited onto a working electrode				non-invasive	
		(WE) of screen-printed carbon electrodes			- a sensitive point-of-care	medium. With	
		(SPE); said linker moiety is covalently			(POC) screening tool for the	ultrasensitive and	
		bound to a surface terminated oxygen on			early detection of oral cancer to	picomolar level	
		Ti3C2 MXene and said monoclonal			significantly increase the	quantification	
		antibody, blocked with a blocking agent, is			survival rates of patients.	capability, it	
		immobilized by forming an amide bond			parents.	functions as a	
		with said linker moiety			- a process for fabrication of an	point-of-care	
		The said linker morety			electrochemical immunosensor	(POC) screening	
		Inventors: Gopinath Packirisamy, Omal			for ultrasensitive and picomolar	tool to improve	
					level quantification of tumour	early diagnosis	
		Surya Souraph S and Damini Verma			necrosis factor-alpha (TNF- α).	and patient	
					increase increase aipina (1111 w).	survival rates,	
			l		1	burvivar races,	

					 a process for fabrication of an electrochemical immunosensor for non-invasive diagnostics, detection and monitoring of oral cancer biomarker TNF-α. a process for fabrication of an improved and highly sensitive electrochemical immunosensor that uses nanomaterials including metal nanoparticles, polymeric nanomaterials, carbon nanotubes, and nanohybrids 	utilizing nanomaterials and nanohybrids for enhanced sensitivity and performance.	
16.	System and method for quantifying coexisting gas hydrate morphologies in geological formations	The present disclosure relates to a system and method for determining morphology segmented gas hydrate saturation in geological formations. The system comprises a data reading unit to extract velocity data from well log data, and a curation unit to assess the velocity data through visualization and petrophysical evaluation to identify the geological formations containing gas hydrates. A rock physics modeling unit generates forward models of the velocity data as a function of hydrate saturation for a plurality of hydrate morphology classes, based on a set of predefined rock physics theories. A processing unit inverts each class of hydrate morphologies and the velocity data using a feed-forward Gaussian Process Regression model, in order to generate hydrate saturation estimates along with associated	Yes Application no.: 202511085667	3	Reliable and Interpretable: Provides an accurate system and method for estimating gas hydrate saturation, improving the usability of well log data interpretation. Enhanced Physical Realism: Incorporates multiple hydrate morphology classes—porefloating, cementing, loadbearing, and fracture-filling—within rock physics models for geologically meaningful characterization. Morphology-Specific Analysis: Decomposes overall hydrate saturation into contributions from each hydrate morphology class.	The present invention relates more particularly to methods and systems for quantifying coexisting hydrate morphologies by segmenting estimated gas hydrate saturation within geological formations using well log data.	https://drive.google.com/drive/folders/1LLh2sNF Y Fa Bf65q r7NLpWMo jHpkTAZ?u sp=sharing

uncertainty. A quantification unit performs a Shapley value-based analysis to quantify the morphological contribution of each hydrate morphology class and determine the gas hydrate saturation.	Transparent Predictions: Applies Shapley value-based cooperative game theory to attribute the role of each morphology, enhancing model transparency and user confidence.	
Inventors: Ravi Sharma, Ashish Dhiman, Hirakjyoti Kalita, Varun Dev JamwaL and Nitin Nagarkoti	User-Friendly Visualization: Displays hydrate saturation distributions alongside morphological contributions to support effective geological and geo-mechanical interpretation and informed decision-making.	